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Abstract
We study the coupled rotational diffusion in a two-particle chain on the basis
of a Smoluchowski equation and calculate time correlation functions that
are measurable in an experiment. This approach might be used to explore
hydrodynamic interactions in the limit where lubrication theory is valid.

1. Introduction

Colloids are widely considered as models for atomic systems [1, 2]. However, a specific
signature of colloidal suspensions is hydrodynamic interactions [3, 4]. Moving colloids
interact with each other through the flow fields that they create. This is a true multi-body
problem which can only be handled by approximate methods such as multipole expansions
for large particle distances (see, e.g., [4, 5]) and lubrication theory when they come close
to each other [6]. Conventionally, hydrodynamic interactions are monitored through their
effect on self-diffusion and collective diffusion in colloidal suspensions [1, 4, 7] but recent
experiments with optical tweezers on a pair of particles [8] also allow a controlled exploration of
hydrodynamic interactions as a function of particle separation, confirming standard approaches
due to Oseen and also Rotne and Prager [3, 4].

Recent work also studied the rotational diffusion of tracer particles [9–11] or colloids
trapped in optical tweezers [12]. An experimental system introduced by Bibette et al [13]
suggests the possibility of directly measuring the effect of hydrodynamic interactions on the
rotational diffusion in the limit where lubrication theory is valid. Charged superparamagnetic
particles under the influence of a magnetic field form chains where the particle separation can be
precisely tuned by the magnetic field strength. By labelling the particles with a phosphorescent
dye [11] or by using birefringent colloids [14], rotational diffusion can then be monitored.

This paper investigates rotational diffusion in a two-particle chain theoretically. It
first introduces the Smoluchowski equation to treat rotational diffusion and then discusses
observables to be measured in an experiment.
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2. Rotational diffusion and the Smoluchowski equation

Let us first briefly review the rotational diffusion of one particle that can also be considered as
a random walk on the unit sphere. The probability density P(ν̂, t) of finding the particle with
an orientation given by the unit vector ν̂ at time t satisfies the Smoluchowski equation [9]

∂ P(ν̂, t)

∂ t
= D0∇2

r P(ν̂, t). (1)

This is in complete analogy with translational diffusion. However, instead of the Laplace
operator, the square of the nabla operator in angular space ∇r has to be used, where the index
r refers to rotation. Since ∇r = 2π i

h L, where L is the angular momentum operator known
from quantum mechanics, all the algebra developed for L [15] is also valid for ∇r . To be
concrete, we note that

∇r = ν̂ × ∂

∂ ν̂
=




− sin ϕ ∂
∂ϑ

− cos ϕ

tan ϑ
∂
∂ϕ

− cos ϕ ∂
∂ϑ

− sin ϕ

tan ϑ
∂
∂ϕ

∂
∂ϕ


 , (2)

where φ, ϑ are the spherical coordinates used to represent ν̂. The rotational diffusion constant
D0 in equation (1) is related via an Einstein relation to the mobility µ0 = 1/(8πηa3) for
rotational motion, i.e., D0 = kBT µ0. Now, since the operator ∇2

r possesses the spherical
harmonics Y l

m(ν̂) as its eigenfunctions, ∇2
r Y l

m(ν̂) = −l(l + 1)Y l
m(ν̂), one calculates, with the

same method as presented below, the time correlation functions

〈Y l∗
m [ν̂(t)]Y l′

m′ [ν̂(0)]〉 = 1

4π
δll′ δmm′ e−l(l+1)D0 t . (3)

Here ν̂(t) means orientation of the particle at time t and the symbol ∗ means complex conjugate.
For small times, one shows with the help of equation (3) (for details, see below) that the square
of the angular displacement of ν̂ exhibits the typical diffusive behaviour:

〈|ν̂(t) − ν̂(0)|2〉 ≈ 4D0t . (4)

We now concentrate on a chain of two particles of radius a whose centres are connected by
the vector r. For simplicity, we only consider their rotational diffusion, i.e., we disregard any
coupling to translational motion. In particular, we take the particles’ separation r as fixed, e.g.,
by assuming that fluctuations around the equilibrium separation, governed by the two-particle
potential, are negligibly small. The coupled rotational diffusion is described by self-diffusion
tensors D11 = D22 for particles 1 and 2, respectively, and the tensors D12 = D21 encoding
the hydrodynamic interactions between particle 1 and 2. As in the one-particle case, these
quantities are related to mobilities by an Einstein relation, Di j = kBT µi j . The mobilities µi j

connect the torque T j on particle j with the angular velocity ωi of particle i : ωi = µi jT j . Due
to Lorentz’s reciprocal theorem [3], they fulfil µi j = µt

j i , where t means transposed matrix. If,
in addition, the particles are identical, µi j = µ j i . The uniaxial symmetry of the two-particle
chain determines the form of Di j :

Di j = D⊥
i j 1 + �Di j r̂ ⊗ r̂ with �Di j = D‖

i j − D⊥
i j , (5)

where 1 means the unit tensor, r̂ = r/r and ⊗ means the tensor product. The constants D‖
i j

and D⊥
i j refer, respectively, to rotational diffusion about the two-particle axis r̂ and a direction

perpendicular to it. The related mobilities as a function of reduced particle distance r/a are
plotted in figure 1. The library HydroLib [16] allows one to calculate their values ranging from
small particle distances where lubrication theory has to be applied to large distances where
expansions into a/r are applicable. For comparison, the Rotne–Prager approximation is also



Rotational diffusion in a chain of particles S3633

0.7

0.8

0.9

1.0

2 3 4 5

m
ob

ili
ty

  µ
rr 11

 / 
µ 0

||  

HYDROLIB
Rotne-Prager

-0.05

0.00

0.05

0.10

2 3 4 5

m
ob

ili
ty

  µ
rr 12

 / 
µ 0

||

 

centre-to-centre distance  r / a centre-to-centre distance  r / a

⊥

⊥

Figure 1. The rotational mobilities of the two-particle chain in units of µ0 = 1/(8πηa3) as a
function of reduced centre-to-centre distance r/a. Full lines: values calculated with numerical
library HydroLib; dotted lines: the Rotne–Prager approximation.

shown. Both graphs of figure 1 illustrate that the Rotne–Prager approximation works well
for centre-to-centre distances larger than 3a. To see noticeable deviations of the mobilities
µ

rr‖
11 and µrr⊥

11 from the single-particle value µ0 = 1/(8πηa3) (the index rr refers directly to
the rotational degree of freedom), the particles have to be close. Note that the mobilities in
both graphs stay finite when the particles approach contact at r = 2a; the derivatives of the
perpendicular coefficients, however, are singular.

The Smoluchowski equation determines the temporal evolution of the probability density
P(ν̂1, ν̂2, t) of finding particles 1 and 2 with respective orientations given by ν̂1 and ν̂2 at
time t [4, 9]:

∂ P(ν̂1, ν̂2, t)

∂ t
= L̂S P(ν̂1, ν̂2, t), (6)

where

L̂S = ∇r1 · D11∇r1 + ∇r2 · D22∇r2 + 2∇r1 · D12∇r2 (7)

denotes the Smoluchowski operator that is a generalization of D0∇2
r in the single-particle

equation (1). Since the two particles are identical and with the help of equation (5), it is
rewritten as

L̂S = D⊥
11(∇2

r1 + ∇2
r2) + �D11

(
∂2

∂ϕ2
1

+
∂2

∂ϕ2
2

)
+ 2D⊥

12∇r1 · ∇r2 + 2�D12
∂

∂ϕ1

∂

∂ϕ2
(8)

where ∂/∂ϕi is the z component of ∇ri with ẑ ‖ r. In analogy to the wavefunction determined
from Schrödinger’s equation in quantum mechanics, the time evolution of the probability
density P(ν̂1, ν̂2, t) is known in principle when eigenvalues and eigenfunctions of the
Smoluchowski operator are known. Due to the analogy with the angular momentum algebra,
the eigenvectors of the unperturbed problem, i.e., particles not coupled by hydrodynamic
interactions (D⊥

12 = �D12 = 0), are just products of two spherical harmonics: 	(ν̂1, ν̂2) =
Y l1

m1
(ν̂1)Y l1

m2
(ν̂2). They are even eigenfunctions of the last term in the second line of

equation (8). The operator ∇r1 · ∇r2, however, mixes the eigenfunctions of the unperturbed
problem. How this is done can be calculated with the help of ‘ladder operators’ introduced in
full analogy to the angular momentum algebra [15]:

∇±
r = ∇r x ± i∇ry . (9)

Applied to spherical harmonics, they yield

∇±
r Y l

m(ν̂) = i
√

l(l + 1) − m(m ± 1)Y l
m±1(ν̂) = ic±

lm Y l
m±1(ν̂). (10)
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We rewrite the crucial term ∇r1 · ∇r2 of L̂S with the help of

∇r x = 1
2 (∇+

r + ∇−
r ) and ∇ry = 1

2i
(∇+

r − ∇−
r ) (11)

as

∇r1 · ∇r2 = 1

2
(∇+

r1∇−
r2 + ∇−

r1∇+
r2) +

∂

∂ϕ1

∂

∂ϕ2
(12)

and can now fully determine how the Smoluchowski operator acts on the unperturbed
eigenfunction:

−L̂SY l1
m1

Y l2
m2

= {D⊥
11[l1(l1 + 1) + l2(l2 + 1)] + �D11(m

2
1 + m2

2) + 2D‖
12m1m2}Y l1

m1
Y l2

m2

+ D⊥
12(c

+
l1m1

c−
l2m2

Y l1
m1+1Y l2

m2−1 + c−
l1m1

c+
l2m2

Y l1
m1−1Y l2

m2+1) (13)

where we used D‖
12 = D⊥

12 + �D12 and the coefficients c±
lm are defined in equation (10).

3. Time correlation functions and observables

We are interested in quantities that can be measured in experiments. We therefore define the
most general time correlation function


(
l1 l2m1m2

l′1 l′2m′
1m′

2
|t) = 〈Y l1∗

m1
[ν̂1(t)]Y l2∗

m2
[ν̂2(t)]Y

l′1
m′

1
[ν̂1(0)]Y

l′2
m′

2
[ν̂2(0)]〉 (14)

which can be related to useful observables. Formally, 
 is calculated using the propagator
P(ν̂1, ν̂2, t|ν̂ ′

1, ν̂ ′
2, 0) that gives the probability of finding the two particles with orientations

ν̂1 and ν̂2 at time t when they had with certainty the orientations ν̂
′
1 and ν̂

′
2 at time t = 0:


(
l1 l2m1m2

l′1 l′2m′
1m′

2
|t) =

∫ ∫
Y l1∗

m1
(ν̂1)Y

l2∗
m2

(ν̂2)P(ν̂1, ν̂2, t|ν̂ ′
1, ν̂ ′

2, 0)

× W (ν̂
′
1, ν̂

′
2, t = 0)Y

l′1
m′

1
(ν̂

′
1)Y

l′2
m′

2
(ν̂

′
2) dν̂1 dν̂2 dν̂

′
1 dν̂

′
2 (15)

where W (ν̂
′
1, ν̂

′
2, t = 0) is the probability distribution for ν̂

′
1 and ν̂

′
2 at t = 0. In the following,

we will use an isotropic distribution W = 1/(4π)2 since the interaction potential of the
particles does not depend on their orientations. However, one could also think of a situation
where one first ‘aligns’ the particles and then lets them evolve with time t . In such a case, W
would be given by a product of delta functions. The time evolution of the correlation function is
calculated from a master equation that we derive by taking the time derivative of equation (15),
then using the Smoluchowski equation (6) for the propagator and finally letting L̂S = L̂

+
S act

on the spherical harmonics at time t:

∂

∂ t

(

l1 l2m1m2

l′1 l′2m′
1m′

2
|t) =

∫ ∫
[L̂SY l1∗

m1
(ν̂1)Y

l2∗
m2

(ν̂2)]P(ν̂1, ν̂2, t|ν̂ ′
1, ν̂

′
2, 0)

× W (ν̂ ′
1, ν̂ ′

2, t = 0)Y
l′1
m′

1
(ν̂ ′

1)Y
l′2
m′

2
(ν̂ ′

2) dν̂1 dν̂2 dν̂′
1 dν̂ ′

2. (16)

With the help of equation (13) and the definition (15), the master equation assumes the form

− ∂

∂ t

(

l1 l2m1m2

l′1 l′2m′
1m′

2
|t) = {D⊥

11[l1(l1 + 1) + l2(l2 + 1)] + �D11(m
2
1 + m2

2)

+ 2D‖
12m1m2}
(

l1 l2m1m2

l′1 l′2m′
1m′

2
|t)

+ D⊥
12[c+

l1m1
c−

l2m2

(

l1l2 m1+1m2−1
l′1l′2 m′

1m′
2

|t) + c−
l1m1

c+
l2m2


(
l1 l2m1−1m2+1
l′1 l′2m′

1m′
2

|t)]. (17)

The time evolution of various observables can now be calculated with the help of this equation.
We illustrate two cases which should be measurable in experiments.
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3.1. One-particle diffusion

Let us investigate the time correlation function for the orientation of particle 1:

〈ν̂1(t) · ν̂1(0)〉 = 4π

3

1∑
m=−1

〈Y 1∗
m [ν̂1(t)]Y 1

m[ν̂1(0)]〉 = (4π)2

3

(10m0

10m0|t). (18)

The first equality is just the addition theorem for spherical harmonics [15] and the second
equality used l2 = l ′2 = m2 = m ′

2 = 0, i.e., Y 0
0 = 1/

√
4π for the second particle in the

definition (14) of 
(. . . |t). Since c+/−
00 = 0, 
(10m0

10m0|t) does not couple to other 
s. The
evolution equation is therefore simple and gives


(10m0
10m0|t) = 
(10m0

10m0|0)e−(2D⊥
11+�D11m2)t . (19)

Compared to the single-particle result of equation (3) (l = 1), the decay rate of the correlation
function now also depends on the azimuthal quantum number m due to presence of the
second particle. With 
(10m0

10m0|0) = 1/(4π)2 (isotropic distribution of ν̂1(0)), the correlation
function (18) becomes

〈ν̂1(t) · ν̂1(0)〉 = 1
3 e−2D⊥

11 t(1 + 2e−�D11t ). (20)

Finally, the mean square angular displacement of ν̂1(t) is calculated from 〈|ν̂1(t)− ν̂1(0)|2〉 =
2(1 − 〈ν̂1(t) · ν̂1(0)〉) and for small times it reads

〈|ν̂1(t) − ν̂1(0)|2〉 ≈ 4Deff
11 t with Deff

11 = 2D⊥
11 + D‖

11

3
. (21)

So D0 in the analogous single-particle equation (4) is replaced by the average of the self-
diffusion constants D⊥

11 and D‖
11 that encode the presence of the second particle. The effective

diffusion constant Deff
11 in units of D0 is plotted in figure 2 as a function of the reduced particle

separation r/a.

3.2. Two-particle diffusion

To access the diffusion constant D‖
12, we consider the correlation function

〈ν̂1(t) · ν̂2(t)ν̂1(0) · ν̂2(0)〉 =
(

4π

3

)2 1∑
m1=−1

1∑
m2=−1


(
11m1m1
11m2m2

|t). (22)
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The correlation functions 
(11±1±1
11m2m2

|t) do not couple to other 
s and therefore relax with a

rate 2(D⊥
11 + D‖

11 + D‖
12) as determined from the first two lines of equation (17). The quantity


(1100
11m2m2

|t) couples to 
(111−1
11m2m2

|t) and 
(11−11
11m2m2

|t) but can be determined straightforwardly
from the three coupled evolution equations. So, ultimately the correlation function (22)
appears as a sum of three exponentials. Since we are mainly interested in the short time
limit of equation (22), we present a shortcut towards the result. With the Taylor expansion


(
11m1m1
11m2 m2

|t) = 1

(4π)2
δm1m2 − am1 t, (23)

where the coefficients am1 are directly determined from the master equation (17) using

(111−1

11m2m2
|0) = 
(11−11

11m2m2
|0) = 0, we immediately arrive at

〈ν̂1(t) · ν̂2(t)ν̂1(0) · ν̂2(0)〉 ≈ 1
3 [1 − 4(Deff

11 + D‖
12/3)t]. (24)

Note that Deff
11 , familiar from the one-particle diffusion (see equation (21)), is modified here

by D‖
12/3. Figure 2 illustrates Deff

11 + D‖
12/3 as a function of particle separation.

In the same manner, we can also determine the short time limit of

〈ν̂1(t) · ν̂2(0)ν̂2(t) · ν̂1(0)〉 =
(

4π

3

)2 1∑
m1=−1

1∑
m2=−1


(
11m1m2
11m2m1

|t) (25)

and obtain

〈ν̂1(t) · ν̂2(0)ν̂2(t) · ν̂1(0)〉 ≈ 1
3 [1 − 4(Deff

11 + Deff
12 )t] (26)

with

Deff
12 = 2D⊥

12 + D‖
12

3
. (27)

We again plot Deff
11 + Deff

12 in figure 2. A comparison of all three effective diffusion constants in
figure 2 only reveals small differences that pose a challenge for measurements in an experiment.
Nevertheless, for small particle distances, the effect of hydrodynamic interactions calculated
on the basis of lubrication theory should be measurable.

A natural extension of the theory presented here is a chain of more than two particles.
However, the mobilities or diffusion tensors in such a system can no longer be described by the
two-particle system; when a particle is situated between two other colloids, three-body effects
become important, certainly for small separations. So experiments could be used to measure
deviations from the effective diffusion constants presented in this article. Furthermore, the
coupling to positional fluctuations of the particles has to be incorporated.
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